Tendensi Sentral

Karakteristik penting untuk ukuran tendensi sentral yang baik

Ukuran nilai pusat/tendensi sentral (average) merupakan nilai pewakil dari suatu distribusi data, sehingga harus memiliki sifat-sifat berikut:
  • Harus mempertimbangkan semua gugus data
  • Tidak boleh terpengaruh oleh nilai-nilai ekstrim.
  • Harus stabil dari sampel ke sampel.
  • Harus mampu digunakan untuk analisis statistik lebih lanjut.
Dari beberapa ukuran nilai pusat, Mean hampir memenuhi semua persyaratan tersebut, kecuali syarat pada point kedua, rata-rata dipengaruhi oleh nilai ekstrem. Sebagai contoh, jika item adalah 2; 4; 5; 6; 6; 6; 7; 7; 8; 9 maka mean, median dan modus semua bernilai sama, yaitu 6. Jika nilai terakhir adalah 90 bukan 9, rata-rata akan menjadi 14.10, sedangkan median dan modus tidak berubah. Meskipun dalam hal ini median dan modus lebih baik, namun tidak memenuhi persyaratan lainnya. Oleh karena itu Mean merupakan ukuran nilai pusat yang terbaik dan sering digunakan dalam analisis statistik.

Kapan kita menggunakan nilai tendensi sentral yang berbeda?

Nilai ukuran pusat yang tepat untuk digunakan tergantung pada sifat data, sifat distribusi frekuensi dan tujuan. Jika data bersifat kualitatif, hanya modus yang dapat digunakan. Sebagai contoh, apabila kita tertarik untuk mengetahui jenis tanah yang khas di suatu lokasi, atau pola tanam di suatu daerah, kita hanya dapat menggunakan modus. Di sisi lain, jika data bersifat kuantitatif, kita dapat menggunakan salah satu dari ukuran nilai pusat tersebut, mean atau median atau modus.
Meskipun pada jenis data kuantitatif kita dapat menggunakan ketiga ukuran tendensi sentral, namun kita harus mempertimbangkan sifat distribusi frekuensi dari gugus data tersebut.
  • Bila distribusi frekuensi data tidak normal (tidak simetris), median atau modus merupakan ukuran pusat yang tepat.
  • Apabila terdapat nilai-nilai ekstrim, baik kecil atau besar, lebih tepat menggunakan median atau modus.
  • Apabila distribusi data normal (simetris), semua ukuran nilai pusat, baik mean, median, atau modus dapat digunakan. Namun, mean lebih sering digunakan dibanding yang lainnya karena lebih memenuhi persyaratan untuk ukuran pusat yang baik.
  • Ketika kita berhadapan dengan laju, kecepatan dan harga lebih tepat menggunakan rata-rata harmonik.
  • Jika kita tertarik pada perubahan relatif, seperti dalam kasus pertumbuhan bakteri, pembelahan sel dan sebagainya, rata-rata geometrik adalah rata-rata yang paling tepat.

Tidak ada komentar:

Poskan Komentar